
www.elsevier.com/locate/aqua-online
Aquaculture 251 (
A biologically based damage assessment model to enhance

aquacultural water quality management

Jeng-Wei Tsai, Chung-Min Liao*, Vivian Hsiu-Chuan Liao

Ecotoxicological Modeling Center, Department of Bioenvironmental Systems Engineering,

National Taiwan University, Taipei 10617, Taiwan, ROC

Received 24 March 2005; received in revised form 20 May 2005; accepted 24 May 2005
Abstract

The lethal concentration for 50% of aquacultural animals (LC50)-based tests determines the external effect concentration

(EEC) following certain statistical models, revealing that no biologically based mechanistic information and only statistical

interpretations of its model parameters could be made. The purpose of this paper is to determine the survival risk of waterborne

metals toward farmed species with respect to lethality based on biologically based mechanistic models. Here we study a

biologically based mechanistic damage assessment model (DAM) compared with a pharmacodynamic (PD)-based critical area

under the curve (CAUC) model to demonstrate the ability of predicting the internal effect concentration (IEC) and survival rate

of farmed species. We tested the proposed models using published acute toxicity and accumulation data for two farmed species,

tilapia (Orechromis mossambicus) exposed to arsenic (As) and abalone (Haliotis diversicolor supertexta) exposed to zinc (Zn),

to compare observed and predicted LC50 and IEC and, subsequently, to predict the survival rate. Our analyses demonstrate that

the DAM- and PD-based survival models performed well and proved its usefulness as a tool in the quantification of risk

assessment in aquacultural ecosystems. The study also supports the suggestion that replacing exposure-based EECs by IECs is a

first step toward a measure for inherent toxicity and can be used to improve the construction of future environmental quality

criteria programs aimed at protecting and restoring the rapidly degrading aquacultural ecosystems.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Due to anthropogenic activities or geochemical

cycling, heavy metal pollution is a serious problem
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and is one of the most studied aquacultural ecosystem

problems. Aquacultural organisms may bioaccumu-

late trace metals in their tissues and consequently

threaten themselves directly. Standard toxicity tests

performed in the laboratory are used extensively to

predict the effects of chemicals in aquatic ecosystems.

This is the first step in determining the environmental

risk of a chemical to aquatic species. We usually use a
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preselected time span to determine the median lethal

concentration (LC50). LC50-based tests determine the

external effect concentration (EEC), although the ob-

served effect depends on the intrinsic toxicity or

biokinetic behavior of the chemical in the aquatic

animal. Therefore, the LC50-based parameters are

mostly model-dependent, yet the models usually

employed, such as logit and probit, have no biologi-

cally based assumptions that allow questions about the

relevancy of such models. Hill (1910) has tried to

employ a log-logistic model to account for an inter-

action between the xenobiotic and the receptor-me-

diated active compound in the organism. However,

the conventional analysis of bioassays does not ac-

count for biological significance.

Normally, internal effect concentration (IEC) is

not measured in toxicity experiments; therefore, we

usually treat IEC as a hidden variable in that the

tissue concentration is scaled with the bioconcentra-

tion factor (BCF) in order to obtain a quantity that is

directly proportional to the tissue concentration yet

has the dimension of an EEC (Freidig et al., 1999;

Lee et al., 2002a). A different approach of measuring

the acute toxicity of chemicals is based on IECs,

instead of EECs. External LC50 values are then

replaced by lethal body concentrations (LBCs)

(French-McCay, 2002). The LBC is the concentra-

tion of a chemical within an organism at the time of

death and can be estimated from experiments in

which the increase of mortality with exposure time

is observed in conjunction with the concentration of

chemicals in the body.

The current procedures in bioassays consist of

observing lethality at fixed times, which can lead to

the determination of LC50 endpoints, rather than sur-

vival curves. There is then a statistical dependence of

LC50 data at consecutive times because they concern

the same organisms. It is more robust and powerful to

use the dose–time–response data than just the LC50

values. Survival models also consider raw experimen-

tal data as time to death versus concentration. They

have an intrinsically greater statistically power, yet

any biological interpretation is limited.

Based on toxicological principles, the mechanisms

through which the dose at the target site elicits the

ultimate adverse response are described by pharma-

codynamic (PD) scheme and referred to as the action

of the effect dose at the target site. Recently, Verhaar
et al. (1999) and Legierse et al. (1999) have developed

a PD-based model, the critical area under the curve

(CAUC) model, to describe the time course of LC50

data for chemicals that act through the irreversible

interaction between chemicals and receptors. The

CAUC model could be applied to depict the acute

toxicity and to estimate incipient LC50 values and

IECs of waterborne chemicals in organisms. PD-

based models have been continuously developed for

the understanding of bioassay data (Liao et al., 2002;

Liao and Ling, 2004).

One biologically based mechanistic model based

on the damage assessment model (DAM) was deve-

loped by Lee et al. (2002b) to describe and predict

time-dependent toxicity data. DAM depicts the modes

of action, including rapid reversible binding to the

target site as well as to those that act with irreversible

binding. Thus, both of the critical body residue (CBR)

and the CAUC models are extreme cases of the DAM

(Lee et al., 2002b). DAM assumes that death occurs

when the cumulative damage reaches a critical level

and was described by a combination of both first-

order toxicokinetic and toxicodynamic models. Dam-

age is assumed to accumulate in proportion to the

accumulated residue and damage recovery in propor-

tion to the cumulative damage when damage is re-

versible. The time-dependent LC50 data are

determined by both a damage recovery rate and an

elimination rate, suggesting that the critical cumula-

tive damage is the determinant of the time–concentra-

tion response relationship and not simply the CAUC.

DAM is originally based on a mathematical model

DEBtox (Bedaux and Kooijman, 1994; Widianarko

and van Straalen, 1996), where DEBtox relates survi-

vorship to toxicokinetics by assuming that the proba-

bility of dying (i.e., the hazard rate) is related to the

concentration of the toxicant in the organism. DEBtox

models have also been extensively applied in the

fields of ecological risk assessment (Pery et al.,

2001; Bonnoment et al., 2002).

The objective of this paper is to determine the

survival risk of waterborne metals toward farmed

species with respect to lethality based on a biologi-

cally based DAM compared with a PD-based CAUC

model to demonstrate the ability in predicting IEC and

survival rate. Our purposed models are able to de-

scribe time-dependent toxicity data, which contain

information about the dynamic aspect of the occur-
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rence of effects. The models were adapted to fit the

data from toxicity and accumulation experiments si-

multaneously to reveal mechanistic information on

metal toxicity on aquatic animals. We also make an

exploratory analysis on the basis of toxicokinetic

parameters to predict the IEC and survival of farmed

species based on the EEC.

We test the proposed models using published acute

toxicity and accumulation data for two farmed spe-

cies, tilapia (Orechromis mossambicus) exposed to

arsenic (As) and abalone (Haliotis diversicolor super-

texta) exposed to zinc (Zn), to compare observed and

predicted LC50 and IEC and, subsequently, to predict

the survival rate. Arsenic and Zn were chosen for

practical as well as theoretical reasons, with the avail-

ability of reasonable amounts of suitable information

as the primary consideration. Generally, as prerequi-

sites for data suitability, we required exposure and

whole-body As and Zn levels measured by accepted

analytical techniques. In this respect, we considered

experimental exposure data to be acceptable only

when whole body concentration data were available

and when the exposure duration was at least 14 days.

Our previous published As–tilapia and Zn–abalone

databases meet this principle. On the other hand, As

and Zn were chosen in this study because they repre-

sent metals of general concern in terms of environ-

mental protection and can span the continuum from

nutritionally essential to nonessential.
2. Materials and methods

2.1. Damage-based survival model

Bedaux and Kooijman (1994) have developed a

biologically based model to investigate the relation-

ships among body residues, cumulative damage, and

survival rate in order to describe the time-dependent

survival probability that can be expressed as the ex-

ponential of cumulative hazard as:

S tð Þ ¼ e�H tð Þ; ð1Þ
where S(t) is the probability to survival until time t

and H(t) is the cumulative hazard (dimensionless). In

DAM-based survival modeling, a proportionality con-

stant k3 (dimensionless) is introduced to relate cumu-

lative hazard and cumulative damage level, which is a
measure of the toxicity of the chemical. The cumula-

tive hazard can be refined as H(t)=k3D(t), where k3 is

a dimensionless coefficient, D(t) is referred to as the

time-dependent cumulative damage (dimensionless)

that can be derived from the solution of first-order

damage accumulation model, dD(t) / dt=kaCwb(t)�
krD(t) and given as:

D tð Þ ¼ ka
ku

ke
Cw

e�kr t � e�ket

kr � ke
þ 1� e�kr t

kr

� �
; ð2Þ

where ka is the damage accumulation rate (g Ag�1

h�1), kr is the damage recovery rate constant (h�1), ku
is the uptake rate constant (mL g�1 h�1), ke is the

elimination rate constant (h�1), and ratio of ku and ke
is known as the BCF (mL g�1), Cwb(t)=BCFCw

(1�e� ke t) is the toxicant concentration in organisms

that is calculated from the first-order bioaccumulation

model dCwb (t) / dt=kuCw�keCwb(t), and Cw is the

waterborne toxicant concentration (Ag mL�1). This

leads to the following expression for H(t) as (Lee et

al., 2002b):

H tð Þ ¼ k3ka
ku

ke
Cw

e�kr t � e�ket

kr � ke
þ 1� e�kr t

kr

� �
; ð3Þ

where Bedaux and Kooijman (1994) introduced a

constant, called bkilling rateQ (ky), to represent a mea-

sure for the toxicity of a compound and has the

dimension [(tissue concentration� time)�1] in that

ky=k3ka. The killing rate is the proportionality factor

that describes the relation between the accumulated

hazard and the cumulative damage. The DAM mode-

ling assumed that death occurs when the accumulative

damage accrues to a critical lethal level (DL). If D(t)

can be denoted by DL,50 for the damage level that

causes 50% mortality, the damage-based median le-

thal concentration (LC50(t)) and lethal body concen-

tration (CL,50(t)) can be derived, respectively, from the

first-order damage accumulation model and the first-

order one-compartment bioaccumulation model as

(Lee et al., 2002b):

LC50 tð Þ ¼ DL;50=ka
e�kr t�e�ke t

kr�ke
þ 1�e�kr t

kr

� � BCF�1; ð4Þ

and

CL;50 tð Þ ¼ DL;50=ka
e�kr t�e�ke t

kr�ke
þ 1�e�kr t

kr

� � 1� e�ket
� �

; ð5Þ
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where DL,50 /ka is a coefficient that reflects the com-

pound equivalent toxic damage level required for 50%

mortality (Ag h g�1). We depicted the relationship

between the median lethal concentration (LC50(t))

and the time-dependent cumulative damage (D(t))

from Eqs. (2) and (4) as LC50 (t)=DL,50Cw /D(t). It

can be rearranged to a new expression as:

D tð Þ
DL;50

¼ Cw

LC50 tð Þ ; ð6Þ

where D(t) /DL,50 is the relative accumulation damage

level, representing the ability to induce a 50% mor-

tality when organisms are exposed to a toxicant.

Whenever the predicted result exceeds the value of

1.0, the mortality of 50% will occur in a given expo-

sure scenario. Therefore, Eq. (6) provides a prediction

tool to assess the lethality of external aqueous con-

centrations to organisms in a given time span.

With sufficient LC50(t) and CL,50(t) data of a given

duration range, it is possible to estimate the best-fit

values of the DL,50 /ka,kr in Eqs. (4) and (5) and ky in

Eq. (3) by using a nonlinear regression technique.

2.2. Pharmacodynamic-based survival model

The PD-based survival model has the form as (Liao

et al., 2002):

S tð Þ ¼ 1�M tð Þ; ð7Þ

where M(t) is the time-dependent mortality (dimen-

sionless). In PD modeling, the relationship between

dose effect and dose concentration is commonly

expressed by the Hill equations (Bourne, 1995; De

Vries, 1996), suggesting that mortality functions can

be estimated from observed mortality percentages in

exposure regimes and can be expressed as functions

of waterborne concentration (Cw) and LC50(t) data as:

M tð Þ ¼ MmaxC
n
w

LCn
50 tð Þ þ Cn

w

; ð8Þ

where Cw is the toxicant concentration in water (Ag
mL�1),Mmax is the maximum dose effect, and n is the

Hill coefficient. With sufficient data of percent mor-

tality over a suitable concentration in water associated

with the specific interval of LC50(t) data, we can

estimate best-fit values of Hill coefficient appearing

in Eq. (8) by a nonlinear regression technique. LC50(t)
causes an effect equal to 50% of the Mmax, which can

be predicted from the first-order bioaccumulation

model based on the assumption of the CAUC model

(Liao et al., 2002, 2004).

On the concept of the CAUC model, adverse effect

is associated with a critical amount of irreversible

bcovalenty occupiedQ target site and the concentration

of inhibited molecules in the target tissue is constant

(Verhaar et al., 1999). De Vries (1996) and Legierse et

al. (1999) suggested that the critical irreversible target

occupation could be expressed with the CAUC, which

describes the time-integrated concentration of the mo-

lecular inhibition. In employing the CAUC model,

LC50(t) can be determined by (Legierse et al., 1999):

LC50 tð Þ ¼ AUC

BCF

ke

ket þ e�ket � 1

� �

þ LC50 lð Þ; ð9Þ

where AUC is the area under the concentration of

toxicant in organism versus time curve (Ag h g�1).

Substituting Cw in the first-order bioaccumulation

model by LC50(t) in Eq. (9) and regarding Cwb(t) as

the CL,50(t), lead to the following expression for

CL,50(t) as:

CL;50 tð Þ ¼ AUC
ke 1� e�ket
� �

ket þ e�ket � 1

� �

þ BCF 1� e�ket
� �

LC50 lð Þ: ð10Þ

The assumption of reversible binding in the critical

burden residue (CBR) model, LC50(t), can also be

predicted from knowledge of the exposure time (t),

depuration rate constant (ke), BCF, and CL,50 by first-

order bioaccumulation model as (McCarty and

Mackay, 1993):

LC50 tð Þ ¼ CL;50

BCF 1� e�ketð Þ : ð11Þ

When the exposure time approaches infinity, Eq. (11)

gives a relation among LC50(l), CL,50, and BCF as:

CL;50 ¼ LC50 lð ÞBCF; ð12Þ

The CL,50 will be constant and thus independent of

exposure concentration and time of death. The inte-
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grated scheme of our conceptual models for the

DAM- and PD-based survival analyses is schemati-

cally illustrated in Fig. 1.
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Table 1

Experimental conditions (meanFS.D.) and available data in tilapia and abalone acute toxicity bioassays

Bioassay system Time (h) Temperature (8C) pH Body size Data adopted Reference

Weight (g) Length (mm)

As–tilapia system 96 24.7F0.2 7.9F0.1 17.6F1.6 148.7F6.5 LC50(t) Liao et al., 2003

Zn–abalone system 168 25F1.5 7.8F0.2 6.6F0.7 3.4F0.43 LC50(t), CL,50(t) Liao et al., 2002

Table 3

Input parameters and parameter estimations for CBR, CAUC, and

DAM models fitted to the LC50(t) and CL,50 (t) data of the Zn–

abalone system

Zn–abalone system DAM CAUC CBR

Input parametersa

ku (mL g�1 h�1) 4.25 (0.96)

ke (h
�1) 0.025 (0.97) 0.025 (0.97) 0.025 (0.97)

BCF (mL g�1) 167 167

Parameter estimatesb
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(Liao et al., 2003) and of Zn to farmed abalone H.

diversicolor supertexta (Liao et al., 2002) in that Zn–

abalone system also contained IEC data. Table 1 lists

the main experimental conditions used in the acute

toxicity tests for As–tilapia and Zn–abalone systems.

To evaluate the DAM, LC50 data were fitted according

to Eq. (4), whereas the LC50 data were fitted based on

Eq. (9) for the CAUC model and Eq. (11) for the

CBR model. In Zn–abalone system, CL,50 data were

fitted based on Eqs. (5), (10), and (12) for the DAM,

CAUC, and CBR models, respectively; whereas Eqs.

(5), (10), and (12) were also used, respectively, to

predict CL,50(t) profiles for the three models in the

As–tilapia system. The toxicokinetic-based input

parameters including uptake rate constant (ku), elim-

ination rate constant (ke), and BCF for As–tilapia

and Zn–abalone systems are listed in Tables 2 and 3,

respectively. Tables 2 and 3 also list the input para-
Table 2

Input parameters and parameter estimations for CBR, CAUC, and

DAM models applied to the LC50(t) data and CL,50 (t) predictions of

the As–tilapia system

As–tilapia system DAM CAUC CBR

Input parametersa

ku (mL g�1 h�1) 0.016 (0.95)

ke (h
�1) 0.0032 (0.97) 0.0032

(0.97)

0.0032

(0.97)

BCF (mL g�1) 5.06 5.06

Parameter estimatesb

DL,50 /ka (Ag h g�1) 1.59 (0.82)

kr (h
�1) 18.85 (0.82)

LC50(l) (Ag mL�1) 5.96 25.57F5.21

(0.79)

5.97

AUC (Ag h g�1) 215.52F55.78

(0.79)

CL,50(l) (Ag g�1) 30.15 60.76 30.05F2.54

(0.82)

ky (Ag g�1 h�1) 0.36 (0.80)

a Determined from 15-day exposure experiment: ku=0.016F
0.002; ke=0.0032F0.0006.
b Estimated from LC50(t) data.
meters used in Eqs. (5), (10), and (12) to predict

CL,50(t) profiles in the As–tilapia system.

All curve fittings were performed using the non-

linear regression option of the StatisticaR software

package (StatSoft, Tulsa, OK, USA). StatisticaR was

also used to calculate the coefficient of determination
DL,50 /ka
(Ag h g�1)

10.89 (0.94)

kr (h
�1) 12.29 (0.94)

LC50(l)

(Ag mL�1)

0.80 1.26F0.02

(0.92)

0.81

AUC (Ag h g�1) 386.69F21.38

(0.92)

CL,50(l)

(Ag g�1)

133.84 210.55 134.68F5.54

(0.94)

ky (Ag g�1 h�1) 0.064 (0.94)

Parameter estimatesc

DL,50 /ka
(Ag h g�1)

8.27

kr (h
�1) 30.74

LC50(l)

(Ag mL�1)

1.52 1.58F0.02

(0.94)

0.87F0.012

(0.93)

AUC (Ag h g�1) 1214.15F91.47

(0.94)

CL,50(l)

(Ag g�1)

254.10 263.86 135.27

ky (Ag g�1 h�1) 0.083 (0.94)

a Determined from 14-day exposure experiment: ku=4.25F
0.978; ke=0.02546F0.018.
b Estimated from LC50(t) data.
c Estimated from CL,50(t) data.
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(r2) and to execute all statistical analyses including the

optimal fits of the LC50(t), CL,50(t), and survival rate

data. Eventually, we employed the DAM-based model

(Eq. (1)) and PD-based survival model (Eq. (7)) to

simulate the concentration-dependent survival rates of

two chemical–species combinations in the 96-h dura-

tion and further to predict the concentration-depen-

dent survival rates in different durations in these two

systems.
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3.1. Fitting toxicity models to LC50(t) and CL,50(t)

data
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models to the observed LC50(t) data of As–tilapia as
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Table 4

A comparison between LC50 (Ag mL�1) data and predicted values

from PD- and DAM-based survival models for selected time inter-

vals in which values of 95% confidence interval (CI) are given in

parentheses

Time (h) LC50 data PD-based

model

DAM-based

model

As–tilapia system

24 69.06 (65.81–72.31) 69.06 80.45

48 51.52 (48.11–54.93) 51.52 41.68

72 38.44 (34.85–42.03) 38.44 28.88

96 28.68 (24.92–32.44) 28.68 22.5

120 21.41 (17.59–25.23) 21.41 18.61

144 15.98 (12.07–19.89) 15.98 16.08

Zn–abalone system

24 1.8 (1.52–2.08) 1.8 1.74

48 1.6 (1.26–1.94) 1.6 1.12

72 1.2 (0.89–1.52) 1.2 0.95

96 1.1 (0.83–1.59) 1.1 0.88

168 0.9 (0.77–1.18) 0.9 0.81
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The estimated model-specific parameters of different

chemical-species combinations are listed in Tables 2

and 3.

Fig. 2A and C show that both DAM and CBR

models describe the data in a more accurate way,

depending on the estimated incipient LC50 values of

the DAM (LC50(l)=5.96 Ag mL�1) and CBR model

(LC50(l)=5.97 Ag mL�1). The DAM-based model

shows a good agreement with the observed LC50(t)

values at t=120 h and 144 h in the As–tilapia system

(all fall within the 95% CI values of observed LC50

data) (Table 4). A similar result also occurs in the Zn–

abalone system, in that the estimated incipient LC50

values of the DAM and CBR model are 0.80 and 0.81

Ag mL�1 (Table 3), respectively, whereas DAM-based
Table 5

Coefficient of determination (r2) of the optimal fits of CBR, CAUC, and D

the predicted results of PD- and DAM-based survival models to survival d

and Zn–abalone systems

Bioassay system Coefficient of determination (r2)

DAM CAUC

As–tilapia system 0.82 0.79

Zn–abalone system 0.94 0.92

0.88b 0.86b

a Predicted results with parameters estimated from LC50(t) data.
b Average values of coefficient of determination.
c Predicted results with parameters estimated from CL,50 (t) data.
predicted LC50 values also show a good agreement

with the observed LC50 value at t =72 h, 96 h, and

168 h (Table 4). The average coefficients of determi-

nation (r2, p b0.05) of DAM, CAUC, and CBRmodels

in the two chemical–species combinations are 0.88,

0.86, and 0.88, respectively (Table 5). The qualitative

differences among the fits of the three models are small

(Table 5), which means that all of the three models are

capable of describing the LC50(t) data in an accurate

way.

Fig. 2D indicates the optimal fits of the three

toxicity models to the CL,50(t) data in the Zn–abalone

system. The CAUC model fits the observed data with

a high coefficient of determination (r2=0.94); how-

ever, neither the DAM nor the CBR model optimally

fitted to the data. The DAM consistently overesti-

mates the toxicity at short exposure times of about

24–96 h and substantially underestimates toxicity at

exposure times longer than 120 h, and the CBR model

fails to reflect the time-dependent toxicity and to

underestimate the lethal body concentrations obvious-

ly (Fig. 2D).

3.2. Prediction of CL,50(t) and assessment of EEC

lethality

The predicted CL,50(t) values from the three to-

xicity models in the As–tilapia system based on the

input parameters estimated from LC50(t) data are

presented in Fig. 2B. The predicted CL,50 values of

CBR model are constant due to the model assump-

tion, whereas the CAUC model shows a dramatic

decrease initially from 210.99 to 26.93 Ag g�1 in the

25th hour, then increasing slightly to 56.76 Ag g�1

at the end of the simulation. The DAM shows an
AM models to LC50(t) data and root mean square error (RMSE) of

ata of different exposure levels in the duration of 96 h for As–tilapia

Root mean square error (RMSE)

CBR DAM-based PD-based

0.82 0.16 0.14

0.94 0.30a 0.24

0.88b 0.17c
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unnoticeable decrease initially from 60.79 to 30.53

Ag g�1 in the fifth hour, then remains constant to the

end of the simulation. It is impractical to accumulate

such high concentrations in tilapia within an ex-

tremely short interval, initially. Consequently, the

most accurate prediction seems to be given by
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of D(t) /DL,50=1.0, the 50% mortality will occur in the period t.
DAM and CBR models, yet the latter fails to des-

cribe the apparent time-dependent concentration of

the CL,50(t) values.

The observed endpoint can be adjusted depending

on the purpose of assessment, where we focus on the

50% mortality. Fig. 3A indicates that when the tila-
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pia are exposed to As concentration V4 Ag mL�1,

the 50% mortality will never occur; the predicted

50% mortality occurring in 96 h and 144 h are 22.49

and 16.08 Ag mL�1, respectively, both of which fall

within the 95% CI of the observed LC50 data (Table

4). Once the waterborne As levels rises to 10, 20,

and 28.6 Ag mL�1, the 50% mortality will occur in

280 h, 114 h, and 78 h, respectively. The lethality

assessment of the Zn–abalone system can be

depicted from Fig. 3B in that the 50% mortality

will never occur when abalone exposed to water-

borne Zn is V0.5 Ag mL�1, with the predicted

50% mortality occurring in 24 h and 96 h being

1.74 and 0.88 Ag mL�1, respectively, which also fall

within the 95% CI of the observed LC50 data (Table

4). Yet when the concentration rises to 1.5 and 2 Ag
mL�1, mortality will occur in 30 h and 20 h, re-

spectively. Our study indicates that the DAM scheme

provides a practicable tool to assess the time–con-

centration integrated lethality of EEC that organisms

are supposed to be exposed.

3.3. Validation of survival models and predictions of

survival rate

The optimal fits of the Hill equation (Eq. (8)) to

the observed percent mortality of the 96-h acute

toxicity test result in the estimated Hill coefficient

of n =4.07 (r2=0.93, p b0.05) and 3.70 (r2=0.98,

p b0.05), respectively, in the As–tilapia and Zn–

abalone systems. We employed the DAM-based

model (Eq. (1)) with input parameters estimated

from two available data sets (Tables 2 and 3) and

PD-based survival model (Eq. (7)) to simulate the

concentration-dependent survival rates of two chem-

ical–species combinations in the 96-h duration. Fig.

4 shows the comparison among observed data

(meanFS.D.) and simulation results of DAM- and

PD-based survival models. The corresponding root

mean square error (RMSE) of simulations (Table 5)

in the As–tilapia system (Fig. 4A) all fall within the

standard deviation of observed data, which ranges

from 0.13 to 0.21; however, only the survival curve

of the DAM-based model with input parameters

estimated from CL,50(t) data has the lowest root

mean square error (RMSE=0.17) and also falls

within the range of standard deviation (0–0.19)

(Fig. 4B), whereas the other two models show
slightly higher values (Table 5). Our analyses reveal

that both of the two prediction tools are applicable

to describe and predict the survival rates. Notice-

ably, the input parameters estimated from internal

lethal concentration data will provide better perfor-

mance on toxicity estimations than that from exter-

nal effect concentrations.

The validation of the two survival models lets us

apply them to predict the time-varying survival rate

in extending chemical concentration ranges. Fig. 5

depicts a clear concentration–response relationship

between waterborne chemical concentrations and sur-

vival. In DAM-based modeling, survival curves are

exponentially decreasing as chemical concentrations

increase (Fig. 5A and C) and rise with shorter dura-

tions in the two chemical–species combinations. The

predicted survival curves by PD-based model display

a similar trend with DAM-based model, yet the

former one declined with sigmoid forms due to

mechanistic characteristics (Fig. 5B and D). The

DAM-based model shows a lazier slope than that

in the PD-based model, revealing an easier concen-

tration–response relationship, especially in short

durations (i.e., in the durations of 24 h and 48 h,

the survival rate are 0.12 and 0.015, respectively,

when farmed tilapia were exposed to waterborne

As of 250 Ag mL�1). There was almost no tilapia

survival when they were exposed to waterborne As

of 150 Ag mL�1 in corresponding durations of the

PD-based model. Another finding is that the DAM-

based model shows more noticeable decreases in the

lower exposure levels. Our predictions obviously

show the time–concentration integrated toxicity

property, suggesting that these two survival models

are applicable in predicting time–concentration inte-

grated survival rates.
4. Discussion

4.1. Characteristics of input and estimated

parameters

Because few previous studies have evaluated As

toxicity to tilapia and Zn toxicity to abalone, we did

not have an a priori estimate of internal lethal body

concentrations. When only LC50(t) data are available

for the prediction of time-dependent toxicity, the
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CAUC model is capable of describing the chemical-

specific trends of CL,50; however, the CBR model has

limitations due to the mathematical formulation and

model assumptions. Changing the assumptions could

extend further studies.

The predicted CL,50 values with input parameters

estimated from LC50(t) data by first-order one-com-

partment model may be unreliable due to variations

from internal biological regular mechanisms of organ-

ism. Our study suggests that using the DAM-based
survival model with biological parameters estimated

from the CL,50(t) data can predict the time–concentra-

tion integrated survival rate accurately, comparable

with traditional PD-based survival models. Therefore,

to describe and predict toxicity dynamics, two differ-

ent types of experiments need to be conducted using

the same treatment levels at the same time, including

bioassays for (i) gathering time-to-death data at a

given exposure level, and (ii) biokinetic experiments

to estimate kinetic parameters.
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Parameters have to be analyzed in view of the

biological assumptions of the models. The biokinetic

parameters ke should be interpreted on the basis of

the first-order bioaccumulation model. The fit of a

model might be strongly determined by the input

parameters. Therefore, the uncertainties in the ke
value, which is an input parameter in the three

toxicity models (Tables 2 and 3), affect the valida-

tion of the models. The experimental LC50 data of
the As–tilapia and Zn–abalone systems support the

validity of the three models, despite the uncertainties

in the input parameter ke.

4.2. Ecotoxicology of Zn and As

Zinc is an essential element for all organisms. It

plays critical role in a variety of biochemical process-

es including regulatory, structural, and enzymatic
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functions. Although Zn is essential, it is toxic at high

concentrations (Koh et al., 1996). When the external

concentration gets too high, the organism’s homeo-

static capacity will fail and toxicity effects will occur

(Van Assche et al., 1997). The exact mechanism of Zn

toxicity is not known. It has been suggested that Zn

may bind to inappropriate intracellular ligands, or

compete with other metal ions for enzyme actives

sites, transporter proteins, etc., leading to toxicity

(Gaither and Eide, 2001). In addition, evidence

shows that high intracellular free Zn promotes neuro-

nal death by inhibiting cellular energy production

(Dineley et al., 2003).

Consequences of cellular Zn overload may include

increased cellular reactive oxygen species (ROS) pro-

duction, loss of mitochondrial membrane potential,

and reduced cellular ATP levels (Dineley et al.,

2003). Moreover, Zn non-enzymatically depleted glu-

tathione (GSH), which leads to activation of the cel-

lular death signal and, eventually, neuronal death

(Chen and Liao, 2003). Further, it has been shown

that Zn can exert toxic effects on aquatic organisms by

inhibiting the uptake of Ca (Spry and Wood, 1985;

Hogstrand et al., 1995). In contrast, there are several

potential mechanisms that detoxify excess Zn. These

include the binding of the metal to cytoplasmic

macromolecules such as metallothioneins (Hamer,

1986). Additionally, Zn transporters may help in de-

toxification by facilitating intracellular sequestration

within organelles, or efflux of zinc across the plasma

membrane (Gaither and Eide, 2001).

Arsenic is an environmental chemical of toxico-

logical concern. Arsenic is a naturally occurring

element, but anthropogenic activities can lead to a

substantial contamination of the environment. The

metabolism of As plays an important role in its

toxicity. The metabolism involves reduction to a

trivalent state and oxidative methylation to a penta-

valent state (Scott et al., 1993). The exact mechan-

ism(s) of cellular and molecular events associated

with As toxicity is poorly understood but several

hypotheses have been proposed. Trivalent arsenicals

react in vitro with thiol-containing molecules such

as GSH and cysteine (Scott et al., 1993; Delnom-

dedieu et al., 1994). The binding of trivalent As

to critical thiol groups may inhibit important bio-

chemical events that could lead to toxicity. In the

pentavalent state, inorganic As may replace phos-
phate in several reactions (Dixon, 1997), resulting

in toxicity.

The major portion of the toxic effects of arsenate,

however, may be due to its reduction to arsenite.

Inorganic As is classified as a known human carcin-

ogen. However, the precise mechanisms by which As

acts as a carcinogen in humans remain to be elucidat-

ed. Because As can elicit many diverse effects, more

than one mechanism may be involved in its carcino-

genic effect (Hughes, 2002). Several mechanisms

have been proposed. These include genotoxicity, cell

proliferation, altered DNA repair and DNA methyla-

tion, oxidative stress, co-carcinogenesis, and tumor

promotion (Hughes, 2002). A better understanding

of the mechanism(s) of action of As will make a

more confident determination of the risks associated

with exposure to this chemical (Hughes, 2002).

4.3. Implications

Our results show that measured and predicted LC50

values decrease as the exposure time is extended and

measured, and CL,50(t) increases slightly with in-

creased exposure time. Since Zn is an important es-

sential nutrient in maintaining a wide variety of

biological processes in organisms, the total Zn content

of tissues in abalone may not solely reflect on the

toxic effect (mortality) of the metal. Therefore, the

amount of required Zn at the target sites that causes

mortality (i.e., the measured CL,50(t) value within the

abalone for Zn) is expected to be higher than those of

nonessential elements. This finding well explained

that the idea of the LC50 value only gives the ambient

concentration that causes toxicity, whereas the CAUC

approach gives more accurate and comparable mea-

sures of the bioavailable concentration that actually

reaches the target site(s) within the organism and

causes toxic effect (mortality). The CBR model fails

to describe the apparent time dependence of the CL,50

of Zn in abalone. The DAM overestimates the CL,50(t)

value at short exposure times and underestimates the

CL,50(t) values as time extends. In contrast, the CAUC

model seems to give a more accurate prediction of the

CL,50(t) of Zn in abalone.

The DAM, CAUC, and CBR models used in this

study were initially developed for organic xenobio-

tics; however, the results from this study suggested

that those models are applicable for metal toxicity
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prediction, both essential element Zn and nonessential

element As in this case. This is not surprising since

the toxicity of both metals has been suggested to be

related to receptor interactions (Spry and Wood, 1985;

Scott et al., 1993; Delnomdedieu et al., 1994; Hog-

strand et al., 1995; McCloskey et al., 1996; Gaither

and Eide, 2001; Di Toro et al., 2001; Dineley et al.,

2003).

The integration of mechanistic models of DAM,

CAUC, and CBR, together with the effective applica-

tion of new knowledge on environmental risk assess-

ment, should enhance ongoing and further strategies

for establishing rigorous ambient water quality criteria

aimed at protecting and restoring degraded aquacul-

tural ecosystems.
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